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Abstract. We present an analytic approach to study concurrent influence of quenched non-magnetic site-
dilution and finiteness of the lattice on the 2D XY model. Two significant deeply connected features of
this spin model are: a special type of ordering (quasi-long-range order) below a certain temperature and
a size-dependent mean value of magnetisation in the low-temperature phase that goes to zero (accord-
ing to the Mermin-Wagner-Hohenberg theorem) in the thermodynamic limit. We focus our attention on
the asymptotic behaviour of the spin-spin correlation function and the probability distribution of mag-
netisation. The analytic approach is based on the spin-wave approximation valid for the low-temperature
regime and an expansion in the parameters which characterise the deviation from completely homogeneous
configuration of impurities. We further support the analytic considerations by Monte Carlo simulations
performed for different concentrations of impurities and compare analytic and MC results. We present as
the main quantitative result of the work the exponent of the spin-spin correlation function power law decay.
It is non universal depending not only on temperature as in the pure model but also on concentration of
magnetic sites. This exponent characterises also the vanishing of magnetisation with increasing lattice size.

PACS. 05.50.+q Lattice theory and statistics (Ising, Potts, etc.) – 64.60.Fr Equilibrium properties near
critical points, critical exponents – 75.10.Hk Classical spin models

1 Introduction

The quasi-long-range ordering (QLRO) is a special feature
of a number of important many-particle systems including
two-dimensional solids, magnets, Bose fluids, liquid crys-
tals [1–3]. As it is known by now the 2D XY model serves
as an archetype capturing special features of QLRO in
these systems. Here we will focus on this particular model
keeping in mind that the results can be generalised for
some other similar models. The regular model, described
by the Hamiltonian

Hreg = −1
2

∑

r

∑

r′
J(r − r′) (Sx

rS
x
r′ + Sy

rS
y
r′) , (1)

has been investigated in great detail, and although most
of its properties are known, no exact solution was found.
In (1) r and r′ span sites of a two-dimensional lattice,
J(r) is the nearest neighbours interaction potential, Sx

r ,
Sy

r are the components of a classical “spin” Sr, the coeffi-
cient 1/2 stands to prevent double count of each bond. We
restrict ourselves to the case of 2-component spins (also
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called planar rotator model [4]). The spin-wave approxi-
mation (SWA) applied by Wegner [5] to analyse the 2D
XY model leads to a result very close to recent Monte
Carlo computations in the region of low enough temper-
atures. In particular, the presence of a special type of or-
dering — the QLRO — manifests itself in the power law
decay of the spin-spin correlation function:

〈SrSr+R〉 ∼ R−ηreg
, (2)

where R is the distance between the spins. The exponent
ηreg given by the SWA is non-universal:

ηreg = kT/(2πJ). (3)

The detailed description of properties of the model given
by Berezinskii [6], and Kosterlitz and Thouless (BKT)
[7,8] is based on the hypothesis that certain local spin
configurations, named topological defects, are responsible
for the QLRO and the behaviour of the system near the
transition to the QLRO phase (the BKT transition) at the
temperature TBKT . The intuitive analogy with the tran-
sition in electrolytes was used in those works. A further
analytical basement for this approach can be found in the
work of Villain [9].
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There are two important aspects which differ the ideal
2DXY model from the systems that can be met in nature:
real physical systems are always finite and possess struc-
tural defects. The finite size effect already has been widely
explored in the pure (undiluted) XY model. The interest
of this question is that in any 2D XY system of finite size,
magnetisation is non-vanishing [10] and goes to zero only
when the lattice becomes infinite as it should be according
to the Mermin-Wagner-Hohenberg theorem [11,12].

The decay of the magnetisation has a power law form
(below the BKT transition temperature) that can be eas-
ily found in the SWA [13,14]:

〈m〉 ∼ N− ηreg

4 , (4)

with the same ηreg, equation (3), that stands in the corre-
lation function (2). Here, N is the total number of spins.
The same result can be obtained also from the finite size
scaling (FSS) (see e.g. Ref. [15] in a similar context.).

The recent works of Bramwell et al. [14,16,17] give
deep analysis of the magnetisation probability distribu-
tion which they claim to be non-Gaussian and of universal
form, independent of both system size and critical expo-
nent ηreg.

Structural disorder as site- or bond-dilution deserves
much attention since it moves an ideal model closer to-
wards true physical systems which can be found in nature.
However the number of works dedicated to this aspect in
the 2D XY model is not mirrored in the great impor-
tance of the topic. Harris criterion [18] implies that energy-
coupled disorder has no effect on the universal properties
(e.g. the critical exponents) at the transition temperature.
The BKT universality class (and in particular the cele-
brated η(TBKT ) = 1/4) is thus unchanged by the intro-
duction of quenched disorder, but one can expect highly
non-trivial dependence of the low-temperature character-
istics, like the spin-spin correlation function, on the con-
centration of spin-vacancies [19].

A non-magnetic site can change the interaction be-
tween topological defects which are responsible as it was
mentioned above for the QLRO [20–22]. The character of
this influence is not completely clear up to now, for ex-
ample, the question: when the QLRO disappears as the
concentration of vacant sites increases, has got different
answers [19,22,23]. As it appears now, the most convinc-
ing scenario is that the QLRO remains up to concentra-
tions very close to the percolation threshold [19,23]. How-
ever we do not touch this question focusing mostly on the
region far from the percolation threshold.

In this paper we investigate the concurrent influence
of quenched site-dilution and finite size of the lattice on
the properties of the 2D XY model. These two modifi-
cations together present a nice approach to investigation
of real physical systems. To quantify the disorder-induced
changes in the QLRO phase we pay attention to the spin-
spin correlation function exponent of the 2D XY model
with quenched site-dilution, ηdil. It describes not only the
decay of the correlation function with the distance but
also the vanishing of the magnetisation in a finite system
with increase of the lattice size and the divergence of the

susceptibility in the same limit. The analytic approach we
use here relies on the SWA and a perturbation expansion
and is verified by MC simulations.

Also we will perform Monte Carlo simulations for a
wide range of 2D XY -spin systems of different sizes at
different temperatures and with different concentrations
of impurities. Systems explored in computer experiments
are always finite, thus they possess a non-vanishing mean
value of magnetisation. The instantaneous magnetisation,
which is the scalar value of the total sum of the spins di-
vided by the number of sites, measured in a given state
from the thermodynamical ensemble of states of the sys-
tem is distributed with a certain law. The form of this
distribution is the point of our interest as well.

The structure of the paper is the following: in the sec-
ond section we give a description of the model and calcu-
late analytically the spin-spin correlation function combin-
ing the SWA and perturbation expansion, we support the
result by MC simulations. In Section 3 more details about
MC simulations can be found. The results are presented
in the form of ring functions and probability distribution
functions of magnetisation. We analyse the plots and add
an analytic calculation of the moments of magnetisation.
We discuss the analytic and MC results and sketch the
plans of future work in Conclusions and give two appen-
dices with technical details of the calculations. Some of
our results have been announced in [24].

2 The spin-spin correlation function

In this section we give description of the diluted 2D XY
model and explain the expansion applied to analyse the
asymptotic behaviour of the spin-spin correlation func-
tion in the low temperature limit. The comparison with
our Monte Carlo results is added to support the analytic
approach.

2.1 The model

The regular 2D XY model (5) is equally described in the
angle variables θr’s that are the angles between the spins
and a certain fixed direction by the Hamiltonian

Hreg = −1
2

∑

r

∑

r′
J(r − r′) cos(θr − θr′), (5)

since Sx
r S

x
r′ + Sy

rS
y
r′ = cos(θr − θr′) for unit length spins.

All the notations are the same as in (1).
We define a set of occupation numbers cr’s that intro-

duce disorder into the lattice:

cr =
{

1, if the site r has a spin;
0, if the site r is empty. (6)

The Hamiltonian modified with these numbers,

H = −1
2

∑

r

∑

r′
J(r − r′) cos(θr − θr′)crcr′ , (7)
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will describe the model on a lattice with dilution. Setting
a certain sequence of numbers {cr} we are able to real-
ize any configuration of lattice dilution with any desirable
concentration of magnetic sites c = cr. We are interested
in some thermodynamical quantities which are dependent
in this case on the configuration of impurities. To obtain
observable values we will average the quantities of interest
over all the possible configurations of non-magnetic sites;
this is referred to as quenched disorder in the literature
as in contrast to annealed disorder when magnetic and
non-magnetic sites are in equilibrium and the configura-
tional averaging has to be made already in the partition
function [25]. We denote the configurational averaging as
(...):

(...) =
∏

r

∑

cr=0,1

[cδ1−cr,0 + (1 − c)δcr,0](...) (8)

(δi,j are Kroneker deltas), here and below index r in sums
and products spans all sites of a 2D square lattice.

Since we restrict ourselves to the low temperature
phase of the model we assume that the directions of spins
on neighboring sites do not differ essentially. This approx-
imation is based on the fact that we expect then that on
a finite system, the spin orientations will not differ signif-
icantly from their ground state value when T → 0. This
allows us to pass to the SWA replacing cos (θr − θr′) in
the Hamiltonian with a quadratic form 1− (θr − θr′)

2
/2.

Nevertheless we cannot give a bound (in terms of temper-
ature nor in terms of dilution) for the validity of such an
approximation, but all the main features of the model are
preserved in the low temperature limit in the Hamiltonian

H = H0 +
1
4

∑

r

∑

r′
J(r − r′) (θr − θr′)

2
crcr′ (9)

where the first term in the expression can be regarded just
as a shift in the energy scale, from now on we denote the
second term by H for simplicity.

Using Fourier transformation of the variables:

θr =
1√
N

∑

k

eikrθk, θk =
1√
N

∑

r

e−ikrθr, (10)

J(r) =
1
N

∑

q

eiqrν(q), ν(q) =
∑

r

e−iqrJ(r),

where k runs over the 1st Brillouin zone, one arrives at:

H = c2Hreg + Hρ + Hρ2 , (11)

with

Hρ ≡ − cJ
∑

k,k′
γkgk,k′ρk+k′θkθk′ (12)

Hρ2 ≡ J
∑

k,k′,q

(2 − γq)

× [ρ−k−k′−qρq − ρ−k−qρ−k′+q] θkθk′ (13)

where

ρq ≡ 1
N

∑

r

e−iqr(cr − c), (14)

gk,k′ ≡ γk+k′−γk−γk′
γk

, (15)

γk = 2 − cos kxa− cos kya. (16)

The last relation is true for a square lattice with spacing a
and the nearest neighbours interaction of strength J . It is
important to stress that the first term in the Hamiltonian
can be regarded as the SWA Hamiltonian of the model on
a pure (undiluted) lattice with a renormalised coupling.
We can use it and write thermodynamical averaging with
respect to the Gibbs distribution as

〈...〉 =
〈
... e−β(Hρ+Hρ2 )

〉

∗

〈
e−β(Hρ+Hρ2 )

〉−1

∗
, (17)

where the notation 〈...〉∗ is used for thermodynamical av-
eraging with the Hamiltonian of the pure system:

〈...〉∗ =
Tr
(
... e−c2βHreg

)

Tr e−c2βHreg
, (18)

Tr (...) ≡
⎛

⎝
∏

k∈B/2

∫ +∞

−∞
dθc

k

∫ +∞

−∞
dθs

k

⎞

⎠ (...),

where θc
r ≡ �θr, θs

r ≡ �θr, and in order to keep the same
number N of variables the product has to be taken over
a half of the 1st Brillouin zone which we have denoted
as B/2 . It was possible to extend the integration region
to (−∞,+∞) because of the Gaussian form of the Boltz-
mann factor that stands in the integrals.

2.2 The expansion in {ρq}
Let us note, that the transformation (11) of the
Hamiltonian (9) is exact, although it looks like a pertur-
bation expansion in ρ. In the forthcoming calculations in
order to perform configurational averaging we expand any
thermodynamical quantity of interest 〈F ({ρq})〉 in terms
of functional variables ρk’s, equation (14):

〈F ({ρq})〉 = 〈F ({0})〉+
∑

k

f1(k)ρk (19)

+
∑

k,k′
f2(k,k′)ρkρk′ +

∑

k,k′,k′′
f3(k,k′,k′′)ρkρk′ρk′′ + ...

Since ρk’s characterize the deviation from the completely
homogeneous disorder in the Hamiltonian they can be con-
sidered as parameters of perturbation. Note that a power
of ρ corresponds to the number of sums over k in (19).
A classification of the perturbation theory series with re-
spect to the number of sums over k corresponds to the
expansion in the ratio of the volume of effective interac-
tion to the elementary cell volume [26]. Taking this ratio
to be small means that it is valid for the short-range inter-
acting systems, which holds for our problem. As far as we
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don’t make any assumption about weakness of disorder,
we may expect that accordance of results of this expansion
with the MC simulations should not be very sensitive to
the value of dilution (1− c) (but of course still far enough
from the percolation threshold where the whole approach
fails).

In the calculations presented below we limit ourselves
to the third order term in the expansion. Then it is not dif-
ficult to perform averaging over configurations of disorder
using the equalities:

ρq = 0,

ρqρq′ = c(1 − c)
1
N
δq+q′,0, (20)

ρqρq′ρq′′ = c(1 − 3c+ 2c2)
1
N2

δq+q′+q′′,0

which can be obtained easily from (8).

2.3 The asymptotic behaviour of the spin-spin
correlation function

The spin-spin correlation function of the diluted 2D XY
model,

G2(R) = 〈crcr+R cos(θr+R − θr)〉, (21)

can be written in the Fourier variables (10) as
〈
crcr+R cos

1√
N

∑

k

(ηc
kθ

c
k + ηs

kθ
s
k)

〉

with

ηc
k = coskr − cosk(r + R),
ηs
k = −(sinkr − sink(r + R)). (22)

Writing the expansion (19) and applying the equalities
(20) we arrive (see appendix A) at the next expression:

G2(R) = c2 〈cos(θr+R − θr)〉∗
×
[

1 − 1 − c

c3
1
βJ

1
N2

∑

k,k′
gk,k′gk′,k

sin2 kR
2

γk

+
1 − 3c+ 2c2

c4
1
βJ

(
2
N

∑

k

sin2 kR
2

γk

− 1
N3

∑

k,k′,k′′
g−k,k′gk′,k′′gk′′,k

sin2 kR
2

γk

)]
. (23)

Since equation (23) is already configurationally averaged
it does not contain the ρ’s anymore, so the correspondence
with the orders of the expansion (19) is not obvious. Let
us explain the origin of each term. The unity corresponds
to the zeroth-order in ρ, the first-order term is identically
vanishing as follows from (20), and the second- and third-
order terms in ρ can be distinguished by their coefficients
that are clear from (20). The second-order term contains

two sums according to the expansion (19). At the same
time the third-order term contains, except the triple sum,
a sum over one k: the summation over two remaining k’s
was possible to carry out explicitly in this particular case.

For our purpose it is enough to get the leading asymp-
totics of the sums that stand in the expression (23) when
N → ∞ and R→ ∞ (see Appendix B):

1
N

∑

k

sin2 kR
2

γk
≈ const. +

1
2π

ln R
a ,

1
N2

∑

k,k′
gk,k′gk′,k

sin2 kR
2

γk
≈ const.′ +

0.73
2π

ln R
a ,

1
N3

∑

k,k′,k′′
g−k,k′gk′,k′′gk′′,k

sin2 kR
2

γk
≈ const.′′ − 0.27

2π
ln R

a .

Inserting these expressions in (23) it is possible to write
the pair correlation function for small enough tempera-
tures in the power law form:

G2(R) ≈ c2(R/a)−ηdil
. (24)

Reminding the spin-spin correlation function exponent of
the pure system, ηreg, given in the SWA by equation (3),
we write

ηdil = ηreg

(
1
c2

+ 0.73
1− c

c3
− 2.27

(1− 3c+ 2c2)
c4

)
.

(25)
In fact, as it can be seen from Appendix B, this result
is true not only in the thermodynamic limit but also for
a system of finite large enough size N . The first term in
the brackets, 1/c2, corresponds to the zeroth order of the
ρ-expansion, the first-order term is identically vanishing
as was already noted before, the second and third terms
in the brackets correspond to the second- and third-order
terms of the ρ-expansion respectively. In the next subsec-
tion we evaluate formula (25) and compare this result with
the MC experiments.

2.4 Comparison with the Monte Carlo results
for the exponent of the spin-spin correlation function

In order to check equation (25), we have performed sim-
ulations of 2D XY -spins using Wolff cluster Monte Carlo
algorithm [27]. We only mention here the main features of
the simulations used in order to obtain the exponent ηdil.

The system size is typically varying from L = 16 to
L = 256. Illustrations will be usually given for the smaller
sizes, and FSS extrapolations require the whole set of sizes.
We discard typically 105 sweeps for thermalization, and
the measurements are performed with typically 105 pro-
duction sweeps.

The boundary conditions are chosen periodic and the
critical exponent η(T ) of the correlation function is mea-
sured indirectly through the finite-size scaling behaviour of
the magnetisation rather than through the space depen-
dence of the correlation function:

MT (L) ∼ L−xσ(T ), xσ(T ) =
1
2
η(T ), (26)
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Fig. 1. The comparison between the MC data and the analytic
results for the ratio ηdil/ηreg as a function of concentration of
occupied sites c obtained in different orders of the ρ-expansion.
The figures written in the legend for the MC symbols refer to
the value of kBT/J . Note that close to the pure system (when
c ≥ 0.96) we used only 104 MCS for thermalization and the
same number for measurements. The number of samples for
the disorder average is still 103.

where the last scaling relation holds in two dimensions
(L =

√
N is the linear size of the lattice). We implicitly as-

sume here that universality holds in the disordered system
and than the exponent measured through the size depen-
dence MT ∼ L− 1

2 η(T ) is indeed linked to that of the space
decay of the correlation function, that is G2(R) ∼ R−η(T )

with the same η(T ) (in 2D of course). The choice of this
indirect procedure is motivated by the difficulties to get
a good numerical estimate in the case of the correlation
function, since it is a strongly non self-averaging quantity
and numerical simulations can hardly measure average
values (a too small sampling of the space of disordered
configurations rather leads to most probable measure-
ments. See e.g. [28]). Global quantities are less subject
to fluctuations than local ones, but still the presence of
non-self-averaging is an obstacle to the achievement of ac-
curate numerical simulations. This is particularly impor-
tant in the vicinity of a critical point where the correlation
length diverges and we have here to face to a critical phase!
The distributions of physical observables typically do not
become sharper with increasing system size, rather their
relative widths stay constant and a detailed analysis of this
is beyond the scope of the present paper. It was neverthe-
less shown in many previous studies in 2 or 3 dimensions
(see e.g. Refs. [29,30]) that usually a number of disor-
der configurations of the order of a thousand is enough
in order to achieve reliable averages. In the present study,
averages over disorder are performed using typically this
number of 103 samples. There is no need of a better statis-
tics, since we are far from the BKT point (in the vicinity
of the de-confining transition, the presence of many topo-
logical defects is an obstacle to thermalization as it can be
shown empirically by the analysis of autocorrelation time
(see e.g. Ref. [31])).

In Figure 1, we compare the ratio ηdil/ηreg evaluated
analytically by keeping terms from the 1st to 3rd order in
ρ-expansions with the MC data. One can see that up to

0.5 0.6 0.7 0.8 0.9 1
c

0

0.2

0.4

0.6

0.8

k B
T

K
T

  /J

from L = 32

QLRO

Fig. 2. Phase diagram of the disordered system (adapted from
Ref. [19]).

the third order the analytic curves approach step by step
the MC data: the 0th order seems to be a rough approx-
imation, the 2nd order curve lies closer to the MC data,
but still much below, and the third order curve seems to
fit the MC results better, although it doesn’t give perfect
accordance. Of course this fact does not allow to conclude
in favour of a similar agreement for higher orders, and it
is possible that the expansion will not show any conver-
gence at all. On the other hand, having more perturbation
theory contributions at hand one can attempt to apply a
resummation technique to improve its convergence, sim-
ilarly as it is commonly done analyzing field-theoretical
expansions [32].

Anyway, comparing outcomes of our analytical and
MC treatments presented in Figure 1 one arrives at the
conclusion about good agreement within concentrations
from c = 0.75 to c = 1 at least up to the third order of the
perturbation expansion. In Figure 2 we show the phase
diagram of the disordered model in order to appreciate
that our present study is limited to a region far from the
percolation point.

Let us proceed further investigating magnetization and
its distribution in a finite-size system.

3 The magnetisation probability distribution

In this section we obtain and discuss the probability distri-
bution function of magnetisation obtained in Monte Carlo
simulations of a two-dimensional XY -spin system, per-
formed for different sizes of the lattice, temperatures and
concentrations of impurities. We support the MC analysis
with an analytic treatment of the magnetisation probabil-
ity distribution in a model of finite size using the same
approach as for the spin-spin correlation function.

3.1 The probability distribution functions

In Section 2.4 we obtained the spin-spin correlation func-
tion decay exponent by use of the finite size scaling
relation (26) for the magnetisation measured in MC sim-
ulations. At the same time the probability distribution
function (PDF) of magnetisation itself deserves much at-
tention since it appears to be of non-trivial form. As we
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mentioned in Introduction it is known that it is non-
Gaussian in the pure 2D XY model. In the case of struc-
tural disorder we can expect also dependence on concen-
tration of dilution.

We define instantaneous magnetisation as the scalar
value of the total sum of the spins divided by the number
of sites,

m =
1
N

∣∣∣∣∣
∑

r

crSr

∣∣∣∣∣ , (27)

measured in a given state from the thermodynamical en-
semble of states of the system with a fixed configuration
of structural disorder. We should stress that with this def-
inition, the magnetisation is normalised to c, due to the
unoccupied sites. The probability to find the system in
a state with magnetisation m, Pconf(m), considered as a
function of m is called the probability distribution func-
tion (PDF) of magnetisation or just the magnetisation
probability distribution.

The thermodynamical mean value of magnetisation de-
fined through the usual procedure of thermodynamical av-
eraging with the Hamiltonian of the system H :

〈m〉 =
Tr
(
me−βH

)

Tr e−βH
, (28)

can be written then in terms of the PDF as

〈m〉 =
∫ 1

0

mPconf(m)dm. (29)

We define also the pth moment of magnetisation as

Mp ≡ 〈mp〉 =
∫ 1

0

mpPconf(m)dm. (30)

The PDF, Pconf(m), is a thermodynamic characteristic
depending only on a macroscopic state of the system. It
can be seen from the well known property of probability
distribution functions that a PDF is defined uniquely by
its moments [34]:

Pconf(m) =
∫ ∞

−∞

dx

2π
eimx

∞∑

p=0

(−ix)p

p!
Mp. (31)

The moments are thermodynamically averaged quantities,
so it follows that the PDF of magnetization is a thermo-
dynamic quantity too and depends on m only as on a
parameter, however to find an analytic expression for the
PDF is not a trivial task even for the pure model.

Thus the mean magnetisations defined by equa-
tions (28) and (29) being the same are obtained by dif-
ferent procedures.

Since we investigate observable quantities here we
should look at the configurationally averaged values of
magnetisation and its moments. In terms of the PDF it
means that Pconf(m) must be averaged over the whole
range of possible configurations of impurities with a fixed
concentration. Then the mean magnetisation and its mo-
ments can be written as:

〈m〉 =
∫ 1

0

mP (m)dm (32)

0.9 0.95
m

0

0.02

0.04

0.06

0.08

0.1

P
(m

)

Fig. 3. The probability distributions of magnetisation for
twenty different realizations for a system of size L = 16 at con-
centration c = 0.95 at a temperature kBT/J = 0.1 (for which
T/TBKT (c) � 0.12). The thick line is the average probability
distribution, still very bumpy with so few configurations.
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m
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0.06
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(m
)
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 =
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 =
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 =
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 =
 32
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 =

 64
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 =
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 =
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 =

 64

T = 0.1

T = 0.5

T = 0.9

Fig. 4. The average distributions over 103 samples (c = 0.95)
at temperatures kBT/J = 0.1 (T/TBKT (c) � 0.12), 0.5
(T/TBKT (c) � 0.60) and 0.9 (T/TBKT (c) � 1.07) for systems
of increasing sizes L = 16, 32, 64.

and

Mp =
∫ 1

0

mpP (m)dm, (33)

where P (m) = Pconf(m) is the configurationally averaged
PDF.

The PDF of magnetization is very suitable for further
analysis of results obtained in Monte Carlo simulations.
In Figure 3 we illustrate the procedure of configurational
averaging of MC data. From different curves of Pconf(m)
obtained for different realizations of dilution we draw one
averaged curve which is P (m).

In the pure 2D XY model two of the main features of
the PDF are that the form of the distribution at fixed tem-
perature is universal, i.e. it does not depend on the size
of the system, and it is non-Gaussian. These two state-
ments have been derived analytically and verified by MC
simulations [14,16,17].

Figure 4 illustrates the MC results for size dependence
of the PDF of magnetisation in a diluted 2D XY -spin
system with concentration of spins c = 0.95 at three dif-
ferent temperatures. We see that at fixed temperature the
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mean magnetisation becomes smaller for bigger lattices
as it should be according to equation (4) in the case of a
pure system. From the curves for low temperatures it is
clear that the form of the distributions is non-Gaussian
like in the pure model. What is more interesting is that
the form of the distributions is noticeably different for dif-
ferent sizes. It seems to be in contradiction with results
for the pure model [14,17,16].

A suitable parameter that can characterize the form

of a PDF is the variance: σ =
√
M2 −M1

2
. It has been

proved that in the pure 2D XY model it is independent of
system size. Here we see in Figure 4 a different qualitative
behaviour, the variance, which is proportional to width
and flatness of the distribution, grows as the size of the
lattice decreases.

Since we simulated a diluted system, this must be the
result of non-magnetic impurities influence. It calls for an
analytic explanation of this dependence in Section 3.3.

3.2 The ring functions

Another way to display the magnetisation probability dis-
tribution observed in MC simulations is to draw a ring
function obtained when one plots the successive values of
the magnetisation (for each Monte Carlo step) in the plane
(mx,my) wheremx andmy are the two components of the
magnetisation (see Fig. 5).

Since the algorithm used here is a cluster algorithm
specially dedicated to this type of spin systems, the suc-
cessive spots are essentially uncorrelated. This is a very
different situation with a Metropolis algorithm where the
successive spots would be correlated (see Ref. [14]).

We are interested in the temperature dependence of a
ring function of magnetisation in a diluted 2D XY -spin
system with fixed size and concentration of impurities. For
this purpose ring functions for a system of size L = 16 at
concentration c = 0.95 for three different temperatures,
kBT/J = 0.1, 0.5 and 0.9, are shown in Figure 5. The
outer ring functions (color on-line) represent the pure sys-
tem of the same size and at the same temperatures.

Since we consider the magnetisation per site taking all
sites into account and in a system with impurities there are
missing spins, the radius of the rings of the diluted system
is smaller for all temperatures than that of the correspond-
ing “pure” ring functions. A feature of the temperature-
behaviour which can be noticed in Figure 5 is that the
high-density region is wider for higher temperatures and
approaches to a delta-function as the temperature goes to
zero. This is well known from MC and analytic investiga-
tions of the pure 2D XY model [14,16]. Both pure and
diluted distributions show clear non-Gaussian character
for higher temperatures which lies in the visible fact that
more points are situated in the inner region of the ring
functions than out of the rings of the highest density.

The discussion above concerns relatively weak dilution
with c = 0.95. The situation appears quite different when
the dilution becomes stronger. In Figure 6 we show a ring
function for a system of the same size as in the previous fig-
ure at temperature kBT/J = 0.1 but with much stronger
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Fig. 5. Ring functions for a system of size L = 16 at con-
centration c = 0.95 for temperatures (from top to bottom)
kBT/J = 0.1, 0.5, and 0.9. The outer ring function (color on-
line) represents the pure system.

dilution, c = 0.70. In order to make the comparison less
artificial, we plot the quantity my/c vs. mx/c which is
normalised to unity for both diluted and pure systems.
One can see now that in a system with sufficient number
of non-magnetic impurities the high-density region of the
ring function is much wider than in a pure system at the
same temperature. We can conclude thus that the variance
that characterizes the width of the distribution must be
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Fig. 6. A ring function for a system of size L = 16 at concen-
tration c = 0.70 for temperature kBT/J = 0.1. The outer ring
function represents the pure system and the quantity shown is
normalised to unity for both systems.

dependent on dilution in a 2D XY model with structural
disorder. This non-trivial observation calls for an analytic
support which is the point of the next subsection.

3.3 Analytic calculation of magnetisation
and its moments

In this subsection we present an analytic analysis of the
PDF of magnetisation in the 2D XY model in the case
of structural disorder. We use here the same scheme that
was presented in Section 2 to obtain the moments of mag-
netisation which define the magnetisation probability dis-
tribution through equation (31).

It is convenient for analytic calculation to rewrite the
instantaneous magnetization (27) as

m =
1
N

∑

r

cr cos(θr − θ), (34)

where θ ≡ 1
N

∑
r θr is the algebraic mean of the angle

variables.
Since we are interested in observable quantities we

must consider configurationally averaged moments of
magnetization:

Mp ≡ 〈mp〉 =
1
Np

∑

r1,...rp

〈
cr1 · · · crp cosψr1 · · · cosψrp

〉
,

where we denoted ψr = θr − θ. Note here that the 1st
moment of magnetisation,

M1 =
1
N

∑

r

〈cr cosψr〉 = 〈c0 cosψ0〉,

is just the mean magnetisation 〈m〉 by definition.

Passing from the product of cosines to a sum we write
the (n+ 1)th moment as

Mn+1 =
1

2nNn

∑

r1,...rn

∑

αi=±1

〈c0cr1 · · · cos (ψ0 +
∑n

i=1 αiψri)〉.

(35)

The expression that stands in the sums in (35) can be
written in Fourier variables as:

〈c0cr1 · · · crn cos(ψ0 + α1ψr1 · · · +αnψrn)〉
=
〈
c0cr1 · · · crn cos 1√

N

∑
k (ηc

kθ
c
k + ηs

kθ
s
k)
〉

with

ηc
k = 1 + α1 coskr1 + · · · + αn coskrn,
ηs
k = − (α1 sinkr1 + · · · + αn sinkrn) . (36)

Substituting in (35) the result for the above expression
obtained in Appendix A in the third order approximation
in the ρ-expansion, equation (50), we get

Mn+1 =
cn+1

2nNn

∑

r1,...rn

∑

αi=±1

〈cos (ψ0 +
∑n

i=1 αiψri)〉∗

×
[

1 − 1
βJ

(
1 − c

4c3
1
N2

∑

k,k′

gk,k′gk′,k

γk
+

1 − 3c+ 2c2

c4

×
(

1
2N

∑

k

1
γk

− 1
4N3

∑

k,k′,k′′
gk,k′gk′,k′′gk′′,k

1
γk

))

×
(
n+ 1 + 2

∑
i<j αiαj cosk(ri − rj)

) ]
(37)

with gk,k′ given by equation (15). Then, using the result

for a quantity of the type
〈
cos 1√

N

∑
k (ηc

kθ
c
k + ηs

kθ
s
k)
〉

∗
from Appendix A, equation (45), we write in the low-
temperature limit

〈cos(ψ0 + α1ψr1 · · · +αnψrn)〉∗ ≈ 1 (38)

− 1
4c2βJN

∑

k �=0

1
γk

(
n+ 1 + 2

∑
i<j αiαj cosk(ri − rj)

)
.

Substituting this expression in (37) we are able to sum
over all αi’s by help of the obvious equalities:

∑

αi=±1

αi = 0, α2
i = 1.

Then the (n+ 1)th moment of magnetisation reads as:

Mn+1 = cn+1

[
1 − n+ 1

βJ

(
1

4c2
1
N

∑

k �=0

1
γk

(39)

−1 − c

4c3
1
N2

∑

k,k′
gk,k′gk′,k

1
γk

+
1 − 3c+ 2c2

2c4

×
(

1
N

∑

k

1
γk

− 1
2N3

∑

k,k′,k′′
g−k,k′gk′,k′′gk′′,k

1
γk

))]
.



O. Kapikranian et al.: The 2D XY model on a finite lattice with structural disorder 101

In the limit N → ∞ we find for the sums in (39) (see
Appendix B):

1
N

∑

k

1
γk

≈ const.+
1
2π

lnN,

1
N2

∑

k

∑

k′
gk,k′gk′,k

1
γk

≈ const.′ +
0.73
2π

lnN,

1
N3

∑

k,k′,k′′
g−k,k′gk′,k′′gk′′,k

1
γk

≈ const.′′ − 0.27
2π

lnN.

For small enough temperatures it is now possible to write
the pth moment of magnetisation in the form:

Mp ≈ cpN− p
4 ηdil

(40)

with the exponent ηdil given by equation (25). The
equality (40) can be rewritten as

Mp ≈M1
p
. (41)

As far as all higher momentsMp can be trivially expressed
in terms of M1 this relation implies absence of multifrac-
tality and it differs from that for the pure model in [16]:

Mn = Mn
1

⎛

⎝1 +
1

(βJ)2
n(n− 1)

16N2

∑

q �=0

1
γ2
q

+ ...

⎞

⎠ ,

since we neglected all the terms in the expansion contain-
ing powers of 1/(βJ) higher than one. In fact the rela-
tion (41) corresponds to a delta distribution of the prob-
ability of magnetisation (when the variance is equal to
zero) that is close to the truth only for very low temper-
atures. We stress here that the absence of multifractality
should be expected in the disordered case [35], but our an-
alytical analysis is not able to reproduce it, due to the
approximation mentioned above.

At the same time the mean value of magnetisation
which can be obtained from equation (40) in the particu-
lar case p = 1:

〈m〉 ≈ cN− 1
4 ηdil

, (42)

recovers the finite-size scaling relation (26) and accords
well with our MC simulations (see Fig. 1).

4 Conclusions

Two important modifications, quenched site-dilution and
finiteness of the lattice, were brought to the usual 2D XY
model in order to investigate quasi-long-range ordering,
which appears in this model at low temperatures, in con-
ditions closer to that in real many-particle systems present
in nature.

We proposed a method of an analytic treatment of the
2D XY model with structural disorder based on the SWA
and a sort of perturbation expansion in the parameter
characterising deviation from the pure system with the
renormalised coupling strength. Computing the perturba-
tion expansion up to the third order we arrived at the
result for the spin-spin correlation function decay expo-
nent ηdil, equation (25), which appears to be non-universal
and depends besides temperature also on concentration of
non-magnetic impurities in the system. Our analytic re-
sult shows nice accordance with MC simulations for a wide
range of dilution concentrations (Fig. 1). We see that up
to the third order in the expansion the analytic results for
the exponent converges to the MC data with every next
order.

We also took into account the finiteness of the lat-
tice which appears to be negligible for the exponent ηdil

but brings on stage another important property of the
2D XY model: non-vanishing magnetisation that tends to
zero with a power law as the size of the lattice increases.
Monte Carlo simulations of diluted 2D XY -spin systems
with different sizes, concentrations of dilution and tem-
peratures, presented in terms of magnetisation probabil-
ity distribution, show some interesting features that differ
essentially from the case of the pure model in the same
conditions. We observed that the variance of the proba-
bility distribution function of magnetisation, which serves
as a characteristic of the distribution form, i.e. depends
on its width and flatness, is a function of temperature,
system size and concentration of dilution in contrast to
the pure 2D XY model where it depends on temperature
only.

We applied our analytic approach to compute the mo-
ments of magnetisation that define the probability distri-
bution function (and its variance) but failed to explain
the features present in our MC simulations because of the
roughness of our approximations. At the same time the
analytic calculations give a good result for the magneti-
sation itself in the diluted model, we found the power law
decay with system size, equation (42), that accords with
the finite-size scaling (26).

The convergence of the perturbation expansion applied
in the analytic treatment is not undoubted but from our
results we can conclude that up to the third order it gives
nice accordance with the MC data. Further analysis of
this question will be a subject of a separate study. An-
other direction of future work would be to implement the
same type of perturbation expansion within the Villain
model [9] and to explore the deconfining transition of the
diluted model. Here the interesting part of the question
does not come across the value of the exponent η, but
rather in the way the vacancies couple to the unbinding
mechanism.

We acknowledge the CNRS-NAS exchange programme and
I.V. Stasyuk for a useful discussion. We also thank H. Chamati
for interesting correspondence.
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Appendix A

In this appendix we give a detailed calculation of a quan-
tity of the type:

〈
cr1 · · · crl cos

1√
N

∑

k

(ηc
kθ

c
k + ηs

kθ
s
k)

〉
, (43)

used while computing the spin-spin correlation function
and the mean magnetisation of a finite-size system and its
higher moments.

Expanding this quantity in the parameters ρq’s up to
the third order we have

〈
cr1 · · · crl cos 1√

N

∑
k (ηc

kθ
c
k + ηs

kθ
s
k)
〉

=

cl
〈
cos 1√

N

∑
k (ηc

kθ
c
k + ηs

kθ
s
k)
〉

∗

[
1

−β
( 〈Hρ cos〉∗

〈cos〉∗ − 〈Hρ〉∗
)
− β2

( 〈Hρ〉∗〈Hρ cos〉∗
〈cos〉∗ − 〈Hρ〉2∗

)

−β
( 〈Hρ2 cos〉∗

〈cos〉∗ − 〈Hρ2

〉
∗

)
+ β2

2

( 〈H2
ρ cos〉∗

〈cos〉∗ − 〈H2
ρ

〉
∗

)

+β2

( 〈HρHρ2 cos〉∗
〈cos〉∗ − 〈HρHρ2

〉
∗

)

−β2

( 〈Hρ2〉∗〈Hρ cos〉∗
〈cos〉∗ − 〈Hρ2

〉
∗ 〈Hρ〉∗

)

−β2

(
〈Hρ〉∗〈Hρ2 cos〉∗

〈cos〉∗ − 〈Hρ〉∗
〈
Hρ2

〉
∗

)

+
β3

2

( 〈H2
ρ〉∗〈Hρ cos〉∗

〈cos〉∗ − 〈H2
ρ

〉
∗ 〈Hρ〉∗

)

+
β3

2

(
〈Hρ〉∗〈H2

ρ cos〉∗
〈cos〉∗ − 〈Hρ〉∗

〈
H2

ρ

〉
∗

)

−β3
( 〈Hρ〉2∗〈Hρ cos〉∗

〈cos〉∗ − 〈Hρ〉3∗
)
− β3

6

( 〈H3
ρ cos〉∗

〈cos〉∗ − 〈H3
ρ

〉
∗

)

+
β

c

∑

q

l∑

i=1

eiqriρq

[ ( 〈Hρ cos〉∗
〈cos〉∗ − 〈Hρ〉∗

)

+
(〈Hρ2 cos〉∗

〈cos〉∗ − 〈Hρ2

〉
∗

)
− β

2

( 〈H2
ρ cos〉∗
〈cos〉∗ − 〈H2

ρ

〉
∗

)

+ β
( 〈Hρ〉∗〈Hρ cos〉∗

〈cos〉∗ − 〈Hρ〉2∗
) ]

− β

c2

∑

q,q′

l∑

i=1

l∑

j=1

ei(qri+q′rj)ρqρq′
( 〈Hρ cos〉∗

〈cos〉∗ − 〈Hρ〉∗
)

−1
c

∑

q

l∑

i=1

eiqriρq +
1
c2

∑

q

∑

q′

l∑

i=1

l∑

j=1

ei(qri+q′rj)ρqρq′

+
1
c3

∑

q,q′,q′′

l∑

i=1

l∑

j=1

l∑

k=1

ei(qri+q′rj+q′′rk)ρqρq′ρq′′

]
(44)

where in the brackets we have noted for economy of space
cos 1√

N

∑
k (ηc

kθ
c
k + ηs

kθ
s
k) ≡ cos. One can easily find

〈
cos 1√

N

∑
k (ηc

kθ
c
k + ηs

kθ
s
k)
〉

∗
=

�
〈
e

i√
N

∑
k(ηc

kθc
k+ηs

kθs
k)
〉

∗
= e

− 1
4c2βJN

∑
k�=0

ηkη−k
γk , (45)

where ηk ≡ ηc
k + iηs

k and the sum runs over the whole 1st
Brillouin zone except the point k = 0. The quantities of
the form

〈
θk1 · · · θkn cos 1√

N

∑
k (ηc

kθ
c
k + ηs

kθ
s
k)
〉

∗
in (44)

can be obtained using the property:

〈
θk1 · · · θkn cos 1√

N

∑
k (ηc

kθ
c
k + ηs

kθ
s
k)
〉

=
(√

N
2i

)n ∂

∂ηk1

· · · ∂

∂ηkn

〈
cos 1√

N

∑
k (ηc

kθ
c
k + ηs

kθ
s
k)
〉
,

(46)

where the notation ∂/∂ηk ≡ ∂/∂ηc
k + i∂/∂ηs

k is used.

Now, taking derivatives step by step and applying the
obvious equality ∂ηk/∂ηk′ = 2δk+k′,0, we obtain:

〈
θkθk′ cos 1√

N

∑
k (ηc

kθ
c
k + ηs

kθ
s
k)
〉

∗
=

〈
cos 1√

N

∑
k (ηc

kθ
c
k + ηs

kθ
s
k)
〉

∗

×
[
− 1

(2c2βJ)2N
ηkηk′

γkγk′
+

1
2c2βJ

δk+k′,0

γk

]
, (47)

〈
θk1θk2θk3θk4 cos 1√

N

∑
k (ηc

kθ
c
k + ηs

kθ
s
k)
〉

∗
= (48)

〈
cos 1√

N

∑
k (ηc

kθ
c
k + ηs

kθ
s
k)
〉

∗

×
[

1
(2c2βJ)4N2

ηk1ηk2ηk3ηk4

γk1γk2γk3γk4

− 1
(2c2βJ)3N

(
δk1+k2,0ηk3ηk4

γk2γk3γk4

+
δk1+k3,0ηk2ηk4

γk2γk3γk4

+
δk1+k4,0ηk2ηk3

γk2γk3γk4

+
δk2+k3,0ηk1ηk4

γk1γk2γk4

+
δk2+k4,0ηk1ηk3

γk1γk2γk3

+
δk3+k4,0ηk1ηk2

γk1γk2γk3

)

+
1

(2c2βJ)2

(
δk1+k2,0δk3+k4,0

γk1γk2

+
δk1+k3,0δk2+k4,0

γk1γk2

+
δk1+k4,0δk2+k3,0

γk1γk2

)]



O. Kapikranian et al.: The 2D XY model on a finite lattice with structural disorder 103

and

〈
θk1θk2θk3θk4θk5θk6 cos 1√

N

∑
k (ηc

kθ
c
k + ηs

kθ
s
k)
〉

∗
=

(49)
〈
cos 1√

N

∑
k (ηc

kθ
c
k + ηs

kθ
s
k)
〉

∗

×
[

− 1
(2c2βJ)6N3

ηk1ηk2ηk3ηk4ηk5ηk6

γk1γk2γk3γk4γk5γk6

+
1

(2c2βJ)5N2

(
δk1+k2,0ηk3ηk4ηk5ηk6

γk2γk3γk4γk5γk6

+ · · ·
)

− 1
(2c2βJ)4N

(
δk1+k2,0δk3+k4,0ηk5ηk6

γk1γk3γk5γk6

+ · · ·
)

+
1

(2c2βJ)3

(
δk1+k2,0δk3+k4,0δk5+k6,0

γk1γk3γk5

+ · · ·
) ]

,

where the sums in the brackets run over all possible ways
of choosing the pairs of k’s in the delta-symbols. Averages
〈θkθk′〉∗, 〈θk1θk2θk3θk4〉∗ and 〈θk1θk2θk3θk4θk5θk6〉∗ can
be obtained from (47)–(49) putting all the ηk’s equal to
zero.

Substituting these results in (44) and applying (20) we
arrive at the expression:

〈
cr1 · · · crl cos 1√

N

∑
k (ηc

kθ
c
k + ηs

kθ
s
k)
〉

= (50)

cl
〈
cos 1√

N

∑
k (ηc

kθ
c
k + ηs

kθ
s
k)
〉

∗

[
1 − 1

βJ

×
(

1 − c

4c3
1
N2

∑

k,k′
gk,k′gk′,k

ηkη−k

γk
− 1 − 3c+ 2c2

2c4

×
( 1
N

∑

k

ηkη−k

γk
− 1

2N3

∑

k,k′,k′′
gk,k′gk′,k′′gk′′,k

ηkη−k

γk

))]

with gk,k′ given by (15). We have neglected terms that
vanish in the thermodynamic limit and terms containing
higher powers of 1/(βJ), since we consider low tempera-
tures.

Appendix B

We are interested in the asymptotic behaviour of the sums:

S1(R,N) ≡ 1
N

∑

q �=0

sin2 qR
2

γq
,

S2(R,N) ≡ 1
N2

∑

q,q′
gq,q′gq′,q

sin2 qR
2

γq
,

S3(R,N) ≡ 1
N3

∑

q,q′,q′′
g−q,q′gq′,q′′gq′′,q

sin2 qR
2

γq
,

S̃1(N) ≡ 1
N

∑

q �=0

1
γq
,

S̃2(N) ≡ 1
N2

∑

q,q′
gq,q′gq′,q

1
γq
,

S̃3(N) ≡ 1
N3

∑

q,q′,q′′
g−q,q′gq′,q′′gq′′,q

1
γq
,

with gq,q′ given by equation (15), when R → ∞ and N →
∞.

The singularity in 1/γq in the point q = 0 defines the
asymptotic behaviour of the sums. Thus we will have the
same asymptotic behaviour after expanding the expres-
sions in the sums for small q’s:

S1(R,N) = c1 +
2
a2

1
N

∑

q �=0

sin2 qR
2

|q| ,

S2(R,N) = c2 +
1

2N

∑

k �=0

(gk,k − gk,−k)

× 2
a2

1
N

∑

q �=0

sin2 qR
2

|q| ,

S3(R,N) = c3 − 1
2N

∑

k �=0

∑

k′ �=0

gk,k′ (gk,k′ − gk,−k′)

× 2
a2

1
N

∑

q �=0

sin2 qR
2

|q| ,

S̃1(N) = c̃1 +
2
a2

1
N

∑

q �=0

1
|q| ,

S̃2(N) = c̃2 +
1

2N

∑

k �=0

(gk,k − gk,−k)

× 2
a2

1
N

∑

q �=0

1
|q| ,

S̃3(N) = c̃3 − 1
2N

∑

k �=0

∑

k′ �=0

gk,k′ (gk,k′ − gk,−k′)

× 2
a2

1
N

∑

q �=0

1
|q| .

c1, c2, c3, c̃1, c̃2, c̃3 are constants.
Numerical calculation gives

1
2N

∑

k �=0

(gk,k − gk,−k) ≈ 0.73,

1
2N

∑

k �=0

∑

k′ �=0

gk,k′ (gk,k′ − gk,−k′) ≈ 0.27.
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Fig. 7. The cut out of the point q = 0.

To get the asymptotic behaviour of the sums

2
a2

1
N

∑

q �=0

sin2 qR
2

|q| ,
2
a2

1
N

∑

q �=0

1
|q|

we replace sums over the 1st Brillouin zone in the ther-
modynamic limit with integrals over continuous variables
qx, qy, according to the formula

∑

q

→ Na2

(2π)2

∫
dqx

∫
dqy + o(N−1).

We take into account the absence of the terms with q = 0
in the sums cutting out from the continuous domains of
integration spaces around the points q = 0 with area equal
to (2π)2

Na2 (see Fig. 7):

⎧
⎨

⎩
qx ε

(
−π

a ,− π
a
√

N

)
∪
(

π
a
√

N
, π

a

)
;

qy ε
(
−π

a ,− π
a
√

N

)
∪
(

π
a
√

N
, π

a

)
.

We should stress here that the exact value of this area is
not important for the asymptotic behaviour which is the
point of our interest, it only must be proportional to 1/N .

After passing to polar coordinates q ε
(

2
√

π

a
√

N
, 2

√
π

a

)

and ϕ ε (0, 2π) one can write

2
a2

1
N

∑

q �=0

sin2 qR
2

|q| =
1

2π2

∫ 2
√

π
a

2
√

π

a
√

N

dq

∫ 2π

0

dϕ
sin2 qR cos ϕ

2

q

(51)
and

2
a2

1
N

∑

q �=0

1
|q| =

1
2π2

∫ 2
√

π
a

2
√

π

a
√

N

dq

q

∫ 2π

0

dϕ . (52)

The integral in (52) gives 1
2π lnN . So

S̃1(N) = c̃1 +
1
2π

lnN,

S̃2(N) = c̃2 + 0.73
1
2π

lnN,

S̃3(N) = c̃3 − 0.27
1
2π

lnN.

Now we are interested in the behaviour of the integral
in (51) in the asymptotic case: N → ∞, R → ∞ . Af-
ter change of variables, kR/2 → x, we split the integrals
over x in two parts:

∫ R
√

π
a

R
√

π

a
√

N

dx →
∫ ε

R
√

π

a
√

N

dx +
∫ R

√
π

a

ε

dx.

It is reasonable to assume that the ratio (R/a)/
√
N

is small in the thermodynamical limit, then we choose
ε small enough to change sin(x cosϕ) in the limits(
R
√
π/a

√
N, ε

)
by its argument. In the integral over the

rest of the domain, (ε,R
√
π/a), we substitute sin2 with

its mean value 1/2, this cannot change the asymptotic
behaviour for a large R. Thus we have simply integrable
functions now and one easily finds:

2
a2

1
N

∑

q �=0

sin2 qR
2

|q| =
1

2π2

∫ ε

R
√

π

a
√

N

xdx

∫ 2π

0

dϕ cos2 ϕ

+
1

4π2

∫ R
√

π
a

ε

dx

x

∫ 2π

0

dϕ = C +
1
2π

ln
R

a
.

(53)

We neglected here terms containing small values
(R/a)2/N and 1/N and collected terms with the fixed
parameter ε in the constant C.

Finally we have:

S1(R,N) = c′1 +
1
2π

ln R
a ,

S2(R,N) = c′2 + 0.73
1
2π

ln R
a ,

S3(R,N) = c′3 − 0.27
1
2π

ln R
a .

Note, that the above estimates hold for finite N as well.

References

1. P.M. Chaikin, T.C. Lubensky, Principles of condensed
matter physics (Cambridge University Press, Cambridge,
1995)

2. D.R. Nelson, Defects and geometry in condensed matter
physics (Cambridge University Press, Cambridge, 2002)

3. H.J. Mikeska, H. Schmidt, J. Low Temp. Phys. 2, 371
(1970)

4. Some authors distinguish the planar rotator model and re-
strict the term XY model to the case of 3-component spins,
only two of them being coupled. The model thus appears
as a limiting case of an easy plane Heisenberg model and
is discussed in the present context in G.M. Wysin, Phys.
Rev. B 71, 094423 (2005)

5. F. Wegner, Z. Phys. 206, 465 (1967)
6. V.L. Berezinskii, Sov. Phys. JETP 32, 493 (1971)
7. J.M. Kosterlitz, D.J. Thouless, J. Phys. C: Solid State

Phys. 6, 1181 (1973)



O. Kapikranian et al.: The 2D XY model on a finite lattice with structural disorder 105

8. J.M. Kosterlitz, J. Phys. C: Solid State Phys. 7, 1046
(1974)

9. J. Villain, J. Phys. France 36, 581 (1975)
10. S.T. Bramwell, P.C.W. Holdsworth, J. Phys.: Condens.

Matter 5, L53 (1993)
11. N.D. Mermin, H. Wagner Phys. Rev. Lett. 22, 1133 (1966)
12. P.C. Hohenberg, Phys. Rev. 158, 383 (1967)
13. J. Tobochnik, G.V. Chester, Phys. Rev. B 20, 3761 (1979)
14. P. Archambault, S.T. Bramwell, P.C.W. Holdsworth, J.

Phys. A: Math. Gen. 30, 8363 (1997)
15. B. Berche, R. Paredes, Cond. Matt. Phys. 8, 723 (2005)
16. S.T. Bramwell, J.-Y. Fortin, P.C.W. Holdsworth, S.

Peysson, J.-F. Pinton, B. Portelli, M. Sellitto, Phys. Rev.
E 63, 041106-1 (2001)

17. S.T. Banks, S.T. Bramwell, J. Phys. A: Math. Gen. 38,
5603 (2005)

18. A.B. Harris, J. Phys. C 7, 1671 (1974)
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